
 1

Number of Positive Integer Solutions
Author: Zhirong(Larry) Li

I have encountered a very good brain teaser question and its solution over the Internet. The original problem

is to find the number of positive integer solutions for
!

111

nyx
 where n is any natural number.

Solution:

For n is EQ 1, we can get
y

y

yx

11
1

1 
 . Since 1y and y are co-prime, hence the unique solution for

this equation is 2,2  yx .

For generic n and
nyx

111
 , since both yandx are positive, they both must be greater than n . Without

loss of generality, suppose dnx  , then

n
d

ndnny






2

1111
. It is then obvious that d must be a

divisor of 2n . Because of symmetric property of the equation, the total number of positive integer solutions

must be equal to the half of the total number of distinct divisors of 2n plus one.

When we get back to
!

111

nyx
 case, the total number of positive integer solutions must be equal to the

half of the total number of distinct divisors of  2
!n plus one.

Look familiar? Remember how we calculate the number of trailing zeros of 100! (The answer is 24).

We know that !n can be represented as   peee
pn 32 32! . As a result, pe can be derived from the

following:
 









































N

i
ip

p

p

n

p

n

p

n

p

n
e

log

1
32



Finally, we can get the closed-form solution for the number of positive integer solutions for
!

111

nyx
 is

2

)12(1
,





Npprimeisp

pe

For 10n , there are 1148 distinct solutions and the value of the answer increases very fast.

20/12/2012

 2

A snippet C++ code for computing the solution number is provided below:
#include <iostream>
#include <vector>
#include <math.h>
using namespace std;

int main(){

 const long N =10;
 // generate the prime table using sieve method
 bool* prime_table = new bool[N+1];
 prime_table[0] = false;
 prime_table[1] = false;
 prime_table[2] = true;
 for(long i=3;i<=N;i++)
 prime_table[i] = true;
 long upper_bound = static_cast<long>(sqrt(static_cast<double>(N)));
 for(long i=2;i<=upper_bound;i++){
 for(long j=i*i;j<=N;j+=i){
 if (prime_table[i]){
 prime_table[j] = false;
 }
 }
 }

 // compute the exponent of prime factors
 vector<int> prime_exponent;
 for(long p=2;p<=N;p++){
 if (prime_table[p]){
 int acc_sum = 0;
 int upper_bound =
static_cast<int>(floor(log(static_cast<double>(N))/log(static_cast<double>(p))));
 for (long j=1;j<=upper_bound;j++){
 acc_sum += static_cast<int>(floor(N/pow(static_cast<double>(p),j)));
 }
 prime_exponent.push_back(acc_sum);
 }
 }

 // calculate the number of positive integer solutions
 long multiplier =1;
 for(std::vector<int>::iterator it = prime_exponent.begin(); it != prime_exponent.end(); ++it)
{
 multiplier *=2*(*it)+1;
 }
 multiplier = (1+multiplier)/2;
 cout<<"The number of solutions for 1/x+1/y=1/(N!) where N="<<N<<" is: "<<multiplier<<endl;
 delete prime_table;
}

