Number of Positive Integer Solutions

Author: Zhirong(Larry) Li
I have encountered a very good brain teaser question and its solution over the Internet. The original problem

. . e . 1 1 1 :
is to find the number of positive integer solutions for =+ — = - wheren is any natural number.
X y nl

Solution:

For n isEQ 1, we can getE = 1—i = y_—l_ Since y—1 and y are co-prime, hence the unique solution for
X y

y
this equation isx =2,y =2.

For genericn and 1 + L = 1, since both x and y are positive, they both must be greater thann . Without
X y n
. 1 1 1 1 . .
loss of generality, suppose x=n+d , then — == — =— . It is then obvious that d must be a
y n n+d n
qa "

divisor of n®. Because of symmetric property of the equation, the total number of positive integer solutions
must be equal to the half of the total number of distinct divisors of n® plus one.

1 1 1 . .
When we get backto =+ == — case, the total number of positive integer solutions must be equal to the
X y n

half of the total number of distinct divisors of (n!)* plus one.
Look familiar? Remember how we calculate the number of trailing zeros of 100! (The answer is 24).

We know that n! can be represented asnl= 2% x3% x---x p™ x---. As a result, e, can be derived from the

following: oo
n n n '°9”N{nJ
e:—+—+—+---=§—_

’ M LOJ L)J =gl

: : o . 1 1 1.
Finally, we can get the closed-form solution for the number of positive integer solutions for —+ — = — s
x y n

1+ []@e, +D

pis prime, p<N

2

Forn =10, there are 1148 distinct solutions and the value of the answer increases very fast.
20/12/2012

A snippet C++ code for computing the solution number is provided below:
#include <iostream>

#include <vector>

#include <math.h>

using namespace std;

int main(){

const long N =10;
// generate the prime table using sieve method
bool* prime_table = new bool[N+1];
prime_table[@] = false;
prime_table[1] false;
prime_table[2] true;
for(long i=3;i<=N;i++)

prime_table[i] = true;
long upper_bound = static_cast<long>(sqrt(static_cast<double>(N)));
for(long i=2;i<=upper_bound;i++){

for(long j=i*i;j<=N;j+=1i){

if (prime_table[i]){
prime_table[j] = false;

¥
}

// compute the exponent of prime factors
vector<int> prime_exponent;
for(long p=2;p<=N;p++){
if (prime_table[p]){
int acc_sum = 0;
int upper_bound =
static_cast<int>(floor(log(static_cast<double>(N))/log(static_cast<double>(p))));
for (long j=1;7j<=upper_bound;j++){
acc_sum += static_cast<int>(floor(N/pow(static_cast<double>(p),j)));
}

prime_exponent.push_back(acc_sum);

}

// calculate the number of positive integer solutions
long multiplier =1;

for(std::vector<int>::iterator it = prime_exponent.begin(); it != prime_exponent.end(); ++it)

{
multiplier *=2*(*it)+1;

}

multiplier = (1+multiplier)/2;

cout<<"The number of solutions for 1/x+1/y=1/(N!) where N="<<N<<" is: "<<multiplier<<endl;

delete prime_table;
}

